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Abstract

We give an intuitive definition for derivative of a function at a point without using the epsilon

and delta concept, which leads to the concept of integration and the outcome of the Fundamental

Theorem of Calculus (FTC). We include the use of graphical representations to strengthen the

understandings of our definitions on differentiation and integration. All of our constructions do

not depend on axiom of completeness of real numbers. This paper is intended for two purposes:

First is to makes the concepts of differentiation and integration more accessible to beginners who

start learning Calculus; second is to give those who have learned Calculus and beyond to ponder

if approaches described in this article can be adapted in teaching Calculus in their respective

countries.

1 The Derivative and Slope Difference

Consider a ‘smooth function’ f in an open interval containing a point at x = x0 below in Figure 1:

f vÝxÞh

f Ýx + hÞ ? f ÝxÞ

x x + h

Figure 1. The height of secant
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The difference between f(x) and f(x+ h) is the height between the secant line connecting the fixed

point (x, f(x)) and its neighboring point (x + h, f(x + h)). In other words, the height of the secant

is f(x + h) − f(x), where the base h is a variable. If we fix the point P = (x, f(x)), and make the

point Q = (x + h, f(x + h)) get closer and closer to P (or make |h| smaller and smaller), will the

slope of the secant reach a number when |h| → 0? If the answer is affirmative, then the slope of the

secant PQ will get closer and closer to the slope of the tangent line at P, and we call such number the

derivative of f at x or simply f ′(x). If f ′ exists at every point throughout an open interval (a, b), then

the function f is called smooth or differentiable over the interval (a, b). This is what most students

encounter in their first year Calculus course. We would like to motivate the idea of f ′(x) without

using limit. We first note the slope of the secant line PQ is
f(x+h)−f(x)

h
. If the slope of the tangent

line at P = (x, f(x)) exists, let’s say A(x), then the difference between
f(x+h)−f(x)

h
and A(x) should

be small. In other words, we would like to see how we can control the quantity

∣∣∣f(x+h)−f(x)h
− A(x)

∣∣∣
and make it small. We start with a polynomial say f(x) = xn for some positive integer n. We observe

that

f(x+ h)− f(x)
h

=

(
n
1

)
xn−1h+

(
n
2

)
xn−2h2 + ...+

(
n
n

)
hn

h

= nxn−1 + h

((
n

2

)
xn−2h+ ...+

(
n

n

)
hn−1

)
.

If we can make the quantity
∣∣h ((n

2

)
xn−2h+ ...

(
n
n

)
hn−1

)∣∣ small when h is small, then the quantity∣∣∣f(x+h)−f(x)h
− nxn−1

∣∣∣ should be small too. Alternatively, if we write

f(t)− f(x)
t− x =

(t− x) (tn−1 + tn−2x+ tn−3x2 + · · ·+ txn−2 + xn−1)

t− x

and note that
f(t)−f(x)

t−x = (tn−1 + tn−2x+ tn−3x2 + · · ·+ txn−2 + xn−1) if t 6= x. If we let t get close

to x, we see the expression

∣∣∣f(t)−f(x)t−x − nxn−1
∣∣∣ is small. Let us explore the following examples from

algebraic point of view as follows.

Example 1 For polynomials such as f(x) = x2, the slope of the secant in the neighboring of the

fixed point x is

(x+ h)2 − x2
h

= 2x+ h.

By making |h| small but h 6= 0 in 2x + h above, the right hand side contains the constant dominant

term, is called the derivative f ′(x) = 2x (which is independent of h).

Example 2 For rational polynomials such as f(x) = 1
x

for x 6= 0, the slope of the secant in the

neighboring of the fixed point x is

1
x+h
− 1

x

h
=

−1
x(x+ h)

=
−1
x2
+

1

x2(x+ h)
h,
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Notice that the absolute value of the ending term,

∣∣∣ 1
x+h
− 1
x

h
+ 1

x2

∣∣∣ = ∣∣∣∣ 1

x2(x+ h)
h

∣∣∣∣ ≤ C|h| (where

C = 2
|x|3 with |h| ≤ |x|

2
). By making |h| small in the tail term, 1

x2(x+h)
h, the constant dominant term

−1
x2

is called the derivative f ′(x) = −1
x2

(which is independent of h).

Example 3 For the radicals such as f(x) =
√
x (x > 0 or x ∈ (a,∞), with a > 0), the slope of the

secant in the neighboring of x is

√
x+ h−

√
x

h
=

1√
x+ h+

√
x
=

1

2
√
x
+

−h
2
√
x(
√
(x+ h) +

√
x)2

.

We note the tail∣∣∣∣√x+ h−
√
x

h
− 1

2
√
x

∣∣∣∣ =
∣∣∣∣∣ −h
2
√
x(
√
(x+ h) +

√
x)2

∣∣∣∣∣ ≤ |h|
2x
√
x
= C |h| ,

where C = 1
2x
√
x

or 1
2a
√
a

when |h| ≤ a. By making |h| small into −h
2
√
x(
√
(x+h)+

√
x)2

, the constant

dominant term 1
2
√
x

is called the derivative f ′(x) = 1
2
√
x

(which is independent of h). Alternatively,

we may write √
x−
√
a

x− a =

√
x−
√
a

(
√
x−
√
a) (
√
x+
√
a)
=

1√
x+
√
a
,

and if we substitute x = a in the last expression above we get the derivative of
√
x at x = a to be 1

2
√
a
.

Example 4 For the trigonometric functions such as f(x) = sinx, we consider

sin(x+ h)− sinx
h

=
sinx cosh+ sinh cosx− sinx

h

=
sinx(cosh− 1)

h
+
sinh cosx

h
.

We observe that 1−cosh = 2 sin2 h
2
≤ h2

2
, and

∣∣∣ cos(h)−1h

∣∣∣ ≤ |h|
2
. Furthermore, since cos(h) < sin(h)

h
<

1, sin(h)
h

is close to 1 when h is small. Therefore,∣∣∣∣sin(x+ h)− sinx
h

− sinh cosx
h

∣∣∣∣ = ∣∣∣∣sinx(cosh− 1)h

∣∣∣∣ ≤ |h|2 .
By making |h| small, we call the derivative of sinx at x to be cosx.

We see from Examples 1 to 4 that, in general, for most elementary functions (such as polynomials,

rational functions, radical functions, and trigonometric functions) we can use algebraic identities to

figure out their respective derivatives (the largest constant) of respective functions; although some-

times we need to elaborate on finding proper inequalities. It is expected that we need more differ-

entiation rules to generate the derivatives of arbitrary elementary functions from the those of basic

elementary functions, which we will skip in this article.
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Indeed, the Examples 1 through 4 above give us motivation of how we should formulate our

general definition of the derivative for a function at a point. The derivative at a fixed point x is

obtained from the identity expanded by a dominant term, A(x), and a tail term, r(x, h). In other

words, we can write

f(x+ h)− f(x)
h

= A(x) + r(x, h) or (1)

f(x+ h)− f(x)− A(x)h = r(x, h) · h. (2)

Alternatively, we may write

f(t)− f(x)
t− x = A(x) + r(x, t) or (3)

f(x)− f(t)− A(x)(x− t) = r(x, t) · (x− t). (4)

Notice that the tail function r(x, h) = f(x+h)−f(x)
h

− f ′(x) has the obvious geometry sense, it is the

difference between the slope of the secant line (between two points) and that of the tangent at a given

point. We shall call the expression r(x, h) as the slope difference. When |h| gets smaller, the slope

difference r(x, h) gets closer to 0, which is consistent with the the concept using epsilon and delta.

We first introduce the notation of a << 1 if a is a real number and a is smaller than any arbitrary

positive small number. Obviously, this is to avoid the language of using epsilon and delta, which is

also a convenient way for us to say that our following Definition 5 is of no difference than the regular

epsilon delta concept. More importantly, we would like to explore how to control the tail function

r(x, h) using Definition 6 below. As expected, we have the following

Definition 5 We say that a function f is differentiable at x if there exists a function A(x), and a

neighborhood (x− δ, x+ δ) of x, with δ > 0, and

|r(x, h)| =
∣∣∣∣f(x+ h)− f(x)

h
− A(x)

∣∣∣∣ << 1 (5)

for all |h| < δ, or

|r(x, t)| =
∣∣∣∣f(x)− f(t)x− t − A(x)

∣∣∣∣ << 1 (6)

for all t ∈ (x− δ, x+ δ).

We will examine what it means by |r(x, h)| << 1 in more details; the treatment of |r(x, t)| << 1
can be done analogously, which we will skip here. For those elementary functions demonstrated in

Examples 1 through 4, we have seen that in order to make |r(x, h)| as small as we wish, it will be

easier if |r(x, h)| can be bounded above by C|h|, where C is a constant. More precisely, we consider

Definition 6 Let x ∈ (a.b), and we say that a function f is differentiable at x if there exists a function

A(x), C > 0, and δ > 0 such that

|r(x, h)| =
∣∣∣∣f(x+ h)− f(x)

h
− A(x)

∣∣∣∣ ≤ C|h|, (7)
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for each h for which |h| < δ and (x − |h| , x + |h|) ⊂ (x − δ, x + δ) ⊂ (a, b). In other words, by

shortening |h|, we call the ending term A(x) in (7) the derivative of f at x, which we denote it by

f ′(x) = A(x). It is important to note that the derivative is unique whenever it exists (see 1 on this

page).

1.1 Comparing the Suggested Definition with the Standard Definition

1. We note that our Definition 6 is more restrictive than Definition 5 or the ordinary one which uses

epsilon and delta notations. Noticeably, we need to find the extra constant C > 0 in the Defini-

tion 6. We will see Definition 6 is actually useful and sufficient for many elementary functions.

To lighten up the burden of working out the constant C algebraically, we demonstrate here the

meaning and the importance of selecting proper values for C and h in order for the inequality

|r(x0, h)| ≤ C |h| to be valid for a fixed x0. Intuitively, if a function f is differentiable, by

zooming in the graph of |r(x0, h)| , it should look like that of an absolute function of C |h| with

proper values of C and h respectively. In other words, if a function f is differentiable at a point

x = x0 we expect the graph of |r(x0, h)| to be similar to an absolute function y = C |h| when

proper values of C and range of h are found. It is not difficult to conjecture that the required

respective values for C and h will be different for each different x. For example, we consider

f(x) = sin(x2) and choose x0 to be a large number, say x0 = 1, 000, then the slope difference

is r(x0, h) =
f(x0+h)−f(x0)

h
− 2x cosx2. Then the plot of |r(1000, h)| when h ∈ [−0.001, 0.001]

can be seen in Figure 2(a) below. We see that the graph of |r(1000, h)| does not look like that

of an absolute function of h yet when h ∈ [−0.001, 0.001]. On the other hand, if we choose

h ∈ [−0.00001, 0.00001], we see from Figure 2(b) that the function |r(1000, h)| is similar to

the graph of an absolute function (combination of two lines with the proper slope values C and

−C respectively). In such case, we have found an desired neighborhood and a constant C. We

leave it to the readers to verify that the required C and h respectively will be more stringent

when x gets larger, which is intuitive because the graph of y = sin(x2) gets denser when x gets

larger.

Figures 2(a) and 2(b) r(1000, h) with various h′s.

1If there are two tangents with respective slopes A1 and A2, we set |A1 − A2| = d > 0, then there exists h such that

|r1| < d
2 , |r2| <

d
2 , |A1 −A2| = |r1 − r2| < d, which is a contradiction.
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2. We use the slope difference when discussing the differentiability of f ′ at one point, which is

to consider if the inequality (5), (6) or (7) holds. The advantage is we can extend this idea to

Section 3 when discussing the condition of integrability of f ′ over an interval, which will be

again involving the slope difference, see (11).

3. For those readers who have knowledge beyond Calculus. We know that if a function is uni-

formly differentiable or f continuously differentiable over a fixed interval, then we have the

following stronger inequality

|r(x, h)| ≤ r(h) << 1, (8)

where r(h) does not depend on x.

4. The Definition 6 is a special case of Livshits [10], where author defines the derivative without

using limits by requiring the estimates∣∣∣∣f(x+ h)− f(x)
h

− f ′(x)
∣∣∣∣ ≤ m(|h|)

for a suitable function m (a modulus of continuity), such as K|h| or K|h|α. We note that Zhang

[19] also presents an elementary method (so called Zhang’s inequality).

2 The Fundamental Theorem of Calculus

2.1 Motivations

The slope of the tangent (if exists) deals with the curve locally only at a point. We now turn to studying

a curve globally. We first divide the curve into many short curves (there is no need to subdivide the

domain evenly) and then each short curve is replaced by the tangent at a node (or at any interior

point), where we assume that the tangent exists everywhere or we have |slope difference| � 1 on

each subinterval.

We note from Figure 3 that the height between two points on the curve can be approximated by

the total heights of all the tangents at a given point in each subinterval.

differential

differential
triangle

total height

height of the secant

Figure 3. Using differentials to approximate the total height
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Let f be a differentiable function and dx be any given real number, and dy be defined in terms of dx.

We call dy simply the differential (when there is no confusion with dx). Consequently, the height of

a tangent at a point x to a curve is the differential or dy at the point x. In other words, we have

differential = the height of tangent at x or

dy = f ′(x)dx = f ′(x)h.

The associated triangle with respect to the tangent is called the differential triangle-see the shaded tri-

angle in Figure 4 below. Then the total height of the curve between two points (a, f(a)) and (b, f(b)),
can be approximated by sum of the height of corresponding differential triangles. Equivalently, we

can use the sum of differentials to estimate the height between these two points, f(b)− f(a).

f vÝxÞh

fÝbÞ ? fÝaÞ

fÝx + hÞ ? fÝxÞ

Figure 4. Differential Triangles

In other words, it follows from Figure 4 that the total height, f(b)−f(a), can be approximated by the

sum of the heights of small triangles,
∑n

i=1 f
′(xi)hi. First, let’s consider the difference of these two

quantities as follows:

Total height− Sum of differentials

= (f(b)− f(a))−
(

n∑
i=1

f ′(xi)hi

)

=

n∑
i=1

[(f(xi + hi)− f(xi)− f ′(xi)hi]

=
n∑
i=1

r(xi, hi)hi (9)

We note the equation (9) is an identity which involves the slope difference again. We investigate (9)

further and make the following observation

f(b)− f(a)−
n∑
i=1

f ′(xi)hi =

n∑
i=1

[(f(xi + hi)− f(xi)− f ′(xi)hi]

= (b− a)
n∑
i=1

(
hi

b− a

)(
f(xi + hi)− f(xi)

hi
− f ′(xi)

)
, (10)
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where the coefficients
hi∑n
i=1 hi

, i = 1, 2, ...n are all positive and sum up to be 1, so we call∑n
i=1

(
hi

b− a

)(
f(xi + hi)− f(xi)

hi
− f ′(xi)

)
the average of the slope differences

of

{
f(x1 + h1)− f(x1)

h1
− f ′(x1),

f(x2 + h2)− f(x2)
h2

− f ′(x2), ...,
f(xn + hn)− f(xn)

hn
− f ′(xn)

}
.

Therefore, we suggest consider the following

Definition 7 If f is continuous over [a, b] and differentiable over (a, b). We say that f ′ is Riemann

integrable over [a, b] if ∣∣∣∣∣
n∑
i=1

(
hi

b− a

)(
f(xi + hi)− f(xi)

hi
− f ′(xi)

)∣∣∣∣∣� 1, (11)

for any partition a = x1 < x2 < ... < xn = b, with xi+1 − xi = hi,where i = 1, 2, ...n − 1, and we

write ∫ b

a

f ′ = f(b)− f(a). (12)

In short, the integrability for f ′ is requiring the average of the slope differences to be arbitrary small.

Remarks:

1. It is easy to see that if f ′ is bounded in a closed interval and satisfying 11, then f is Riemann

integrable.

2. The advantage of the Definition 7 above is that the fundamental theorem of calculus is being

imbedded in the definition.

3. In view of the Definition 7 above, if we can find one partition in [a, b] such that(
hi

b− a

)(
f(xi + hi)− f(xi)

hi
− f ′(xi)

)
(13)

can not be made as small as possible for some 1 ≤ i ≤ n, then f ′ is not Riemann integrable

over [a, b], see Example 13 when considering f(x) =
√
x over [0, 1].

We now turn our attention to describing the condition for the integrability for an elementary func-

tion. If f is an elementary function, f is differentiable at x, and we have∣∣∣∣f(x+ h)− f(x)
h

− f ′(x)
∣∣∣∣ = |r(x, h)| ≤ |r(h)| ≤ C1 · h,

where C1 is a constant and is independent of x. For any partition a = x1 < x2 < ... < xn = b, with

xi+1 − xi = hi, we have

|the maximum of {|r(hi)|}ni=1| ≤ C · (max {|hi|}ni=1) ,
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where C is a constant and is independent of x, and hence we have

|the average of the slope differences| ≤ C · (max {|hi|}ni=1) or∣∣∣∣∣
n∑
i=1

(
hi

b− a

)(
f(xi + hi)− f(xi)

hi
− f ′(xi)

)∣∣∣∣∣ ≤ C · (max {|hi|}ni=1) .

Therefore ∣∣∣∣∣f(b)− f(a)−
n∑
i=1

f ′(xi)hi

∣∣∣∣∣
=

∣∣∣∣∣(b− a)
n∑
i=1

(
hi

b− a

)(
f(xi + hi)− f(xi)

hi
− f ′(xi)

)∣∣∣∣∣
≤ (C · (max {hi}ni=1)) · (b− a). (14)

Hence, if f is an elementary function over an interval [a, b], it is clear that the total error

|f(b)− f(a)−
∑n

i=1 f
′(xi)hi| is small, f ′ is Riemann integrable and we have

∫ b
a
f ′ = f(b)− f(a).

Remark: For those readers who have knowledge beyond Calculus. It is clear that finding the max-

imum slope difference described in (14) over a closed interval is equivalent to requiring the uniformity

for the slope difference. This is equivalent of requiring a function f to be uniformly differentiable

over an interval (which implies that f ′ is uniformly continuous there) or demanding f to have con-

tinuous derivative in a closed interval. We also remind readers that we do allow a function f to be

discontinuous at finitely many points over an interval [a, b], so long as f ′ is bounded over [a, b]. The

following example shows that f ′ is continuous in [0, 1] except at x = 0, f ′ is bounded over [0, 1], and

hence f ′ satisfies condition (11) and f ′ is integrable over [0, 1].

Example 8 We define

f(x) =

{
x+ 2x2 sin(1/x), x 6= 0

0 0.
(15)

Then

∣∣∣∣f(h)− f(0)h
− 1
∣∣∣∣ = |2h sin(1/h)| ≤ 2 |h| so f ′(0) = 1, and we leave it to reader to verify that

f ′(x) =

{
1 + 4x sin(1/x)− 2 cos(1/x), x 6= 0

1 0.

Notice that f ′ is bounded and continuous in (0, 1] (f ′ is continuous in [0, 1] except at x = 0.) We can

prove that f ′satisfies condition (11) or Definition 7. [See [6] page 73]. Consequently, f ′ is integrable

over [0, 1] and
∫ 1
0
f ′ = f(1)− f(0) = 1 + 2 sin(1).

2.2 Experiment Integrability Numerically

We briefly recall the definition of a definite integral of a function over an interval [a, b] in a regular

Calculus textbook is to examine if the Riemann sum is convergent or not, which is hard to examine

or compute by hand sometimes but it is manageable if we have a computational tool. Similarly,
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the theoretical integrability condition for f ′ in (11) sometimes is neither simple nor direct. We will

use some computational techniques here to make this concept clearer. Hongtao Chen et al from the

Institute of Computational Mathematics, use Matlab to check validity of condition (11) as follows:

Example 9 Consider f(x) = x2 in [0, 1], the slope difference in each sub-interval is

(xi + hi)
2 − x2i

hi
− 2δi ≤ 2xi + hi − 2δi ≤ hi ≤ h, (16)

where δi ∈ [xi, xi+1], and h = max{h1, . . . , hn} is called the scale of division. From equation (16)

we note that the total error decreases to 0 if the scale of division decreases to 0. For example, we

choose the scale of division h = 0.1, 0.09, ..., and etc., and we graph the total error of the scale of

division in Figure 5 below, and thus we conjecture that the condition (11) is met.

Figure 5.

Example 10 Consider f(x) = 1/x in [1, 2], the slope difference in each sub-interval is∣∣∣∣1/(xi + hi)− 1/xi
hi

+
1

δ2i

∣∣∣∣ ≤ hi ≤ h, (17)

where δi ∈ [xi, xi+1]. It is clear that the total error decreases to 0 when the scale of the division

decreases to 0. If we choose the scale of division h = 0.1, 0.09, ... and etc., we have the same figure

for the total error of the scale of division as shown in Figure 5, and thus condition (11) is met and f ′

is Riemann integrable over the interval [1, 2].

Example 11 Consider f(x) = sin x in [0, 1], the slope difference in each sub-interval is∣∣∣∣sin(xi + hi)− sinxi
hi

− cos δi
∣∣∣∣ ≤ hi/2 ≤ h, (18)

where δi ∈ [xi, xi+1], and from the formula (18) we find the total error decreases to 0 when the scale

of division decreases to 0. We choose the scale of division h = 0.1, 0.09, ..., and etc. We see from
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Figure 6 below that the scale of division decreases to 0, so does the total error. Thus we conjecture

that the condition (11) is met.

Figure 6.

Example 12 Consider f(x) =
√
x in [1, 2], the slope difference in each sub-interval is∣∣∣∣√xi + hi −

√
xi

hi
− 1

2
√
δi

∣∣∣∣ ≤ hi/2 ≤ h, (19)

where δi ∈ [xi, xi+1], and it follows from (19) that the scale of division decreases to 0, so does the

total error, see Figure 7 below.

Figure 7.

On the other hand, if we consider f(x) =
√
x in [0, 1] and divide [0, 1] into n subintervals. For the

first sub-interval [0, 1/n], we calculate the slope difference at the point x = n−1, with h = −n−1,
then consider ∣∣∣∣∣

(√
0−

√
1/n

−1/n − 1

2
√
n−1

)∣∣∣∣∣ =
√
n

2
,

we see that the slope difference at x = n−1 cannot be made as small as we want when n gets large.

It follows from the Figure 8 that as the scale of division decreases to 0, the error stays near 0.45 (see
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Figure 8 below),

Figure 8.

which suggests that the condition (11) is not met, and thus
∫ 1
0
f ′(x)dx =

∫ 1
0

1
2
√
x
dx does not exist in

the Riemann sense. That is why we define the improper integral of
∫ 1
0

1
2
√
x
dx to be f(1)− f(0) in the

regular Calculus text books.

The next example is intended for those readers who have knowledge about the Lebesgue integra-

tion. We show that the slope difference << 1 at every point in the interval does not guarantee

|the average of slope differences| << 1 over the whole interval.

Example 13 We define

g(x) =

{
x2 cos(

π

x2
), x 6= 0

0 0.
(20)

Then we can verify that

g′(x) =

{
2x cos(πx−2) + 2πx−1 sin(πx−2), x 6= 0

0 0.
(21)

We note that g′ is not continuous at x = 0 and g′ is not bounded on any interval containing x = 0. We

first divide the interval [0, 1] into n equal sized subintervals. Consider the first subinterval [0, 1/n],
we choose the tangent at the specific point x = 1/n, and choose h = −1/n. Then

g(x+ h)− g(x)
h

− g′(x)

=
g(0)− g(1/n)
−1/n − g′(1/n)

=
(−1/n2) cosπn2

−1/n −
[
(2/n) cosπn2 + 2πn sin πn2

]
= (1/n) cosπn2 −

[
(2/n) cosπn2 + 2πn sinπn2

]
= (−1/n) cosπn2 − 2πn sin πn2. (22)
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It is clear that we need h

(
g(x+ h)− g(x)

h
− g′(x)

)
with h = −1/n to be made as small as possible

before saying that g′ is Riemann integrable over [0, 1]. However,

h

(
g(x+ h)− g(x)

h
− g′(x)

)
= (1/n2) cosπn2 + 2π sin πn2, (23)

which can not be made as small as we wish. Therefore g′ is not Riemann integrable over [0, 1]. On the

other hand, since g is differentiable over the interval [0, 1], the slope difference << 1 at every point

in [0, 1].

We note that it can be shown that g′ is not even Lebesgue integrable over the interval [0, 1] (see

[12], page 29). However, since g is differentiable over [0, 1], it is reasonable to expect from the

Fundamental Theorem of Calculus that
∫ 1
0
g′ = g(1) − g(0), the integral

∫ 1
0
g′ should depend on

only the value of g(1) − g(0) regardless if g′ is integrable. This is indeed the deficiency of the

Lebesgue theory and motivation of the modern theory of Henstock and Kurzweil integration theory,

see [2, 3, 12, 17].

2.3 The Area Calculation

The formula (12) can be used to calculate the area of f ′. This is because the ‘sum of differentials’ can

be interpreted not only as the total height of f between two points on the curve but also as the area of

f ′ over a proper interval, see the illustrations in Figures 9(a) and (b) respectively below.

f vÝxÞh
fÝxÞ

a b

f vÝxÞh

f vÝxÞ

Figures 9 (a) and (b).

In other words, the formula (12) can be interpreted as saying that the height of f is equal to the area

under f ′. So, if we want to calculate the area of f ′ we make use of the primitive function f (or the

antiderivative of f ). Finding a primitive function or an antiderivative for a function f can be done for

many elementary functions if we have table for differentiations ahead of time. For example, we see

from Section 1 that

(sinx)′ = cosx

(xn+1)′ = (n+ 1)xn,
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and etc., from which we get the corresponding table for integration immediately, e.g.∫
cosxdx = sinx+ C

∫
xndx =

xn+1

n+ 1
+ C (n 6= −1),

where C is a constant. In addition, we may apply more integration techniques such as integration

by substitution, integration by parts and etc. on more elementary functions to obtain more primi-

tives for more elementary functions. We recall that there are elementary functions, for example for√
1 + cos2 x,while calculating the arc length of sinx on [0, 2π]), whose primitive is not an elementary

function. Moreover, we do not expect to find the primitive for any function all the time. It is sug-

gested in ([16], page 91) that we may fill this gap by using a computational tool through the process

of computing the Riemann sum to construct the primitive for a function f.

3 Conclusion

Many articles using the slope difference and the average slope differences when defining the differ-

entiability and integrability for a function have been published in Chinese publications. It is clear

in order to avoid using the concept of epsilon and delta, one sometimes needs to work on algebraic

equations extensively to find an upper bound for the tail function or upper bound for the quantity of

|(f(b)− f(a))− (
∑n

i=1 f
′(xi)hi)|. The demands on algebraic manipulation skills seems to be ex-

pected and accepted in Chinese school systems; however, this may not be always the case for students

in the US or other parts of the world. To bridge this gap, authors use graphical tools to make the

concepts of differentiation and integration more accessible. The fundamental theorem has been pub-

licized as a graph in two Chinese newspapers, Guangming Daily (27th Jun., 1997) and Renmin Daily

(6th Aug., 1997) (see [4]) and later this graph was incorporated into some mathematics textbooks for

college (see, e.g. [5, 8–10, 13, 14, 18]). It was also used as a cover page for the textbook for senior

high school (see [1, 7, 11]).
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